Refine Your Search

Topic

Author

Search Results

Technical Paper

Design Under Uncertainty and Assessment of Performance Reliability of a Dual-Use Medium Truck with Hydraulic-Hybrid Powertrain and Fuel Cell Auxiliary Power Unit

2005-04-11
2005-01-1396
Medium trucks constitute a large market segment of the commercial transportation sector, and are also used widely for military tactical operations. Recent technological advances in hybrid powertrains and fuel cell auxiliary power units have enabled design alternatives that can improve fuel economy and reduce emissions dramatically. However, deterministic design optimization of these configurations may yield designs that are optimal with respect to performance but raise concerns regarding the reliability of achieving that performance over lifetime. In this article we identify and quantify uncertainties due to modeling approximations or incomplete information. We then model their propagation using Monte Carlo simulation and perform sensitivity analysis to isolate statistically significant uncertainties. Finally, we formulate and solve a series of reliability-based optimization problems and quantify tradeoffs between optimality and reliability.
Technical Paper

Dual-Use Engine Calibration:

2005-04-11
2005-01-1549
Modern diesel engines manufactured for commercial vehicles are calibrated to meet EPA emissions regulations. Many of the technologies and strategies typically incorporated to meet emissions targets compromise engine performance and efficiency. When used in military applications, however, engine performance and efficiency are of utmost importance in combat conditions or in remote locations where fuel supplies are scarce. This motivates the study of the potential to utilize the flexibility of emissions-reduction technologies toward optimizing engine performance while still keeping the emissions within tolerable limits. The study was conducted on a modern medium-duty International V-8 diesel engine with variable geometry turbocharger (VGT) and exhaust gas recirculation (EGR). The performance-emissions tradeoffs were explored using design of experiments and response surface methodology.
Technical Paper

Using Neural Networks to Compensate Altitude Effects on the Air Flow Rate in Variable Valve Timing Engines

2005-04-11
2005-01-0066
An accurate air flow rate model is critical for high-quality air-fuel ratio control in Spark-Ignition engines using a Three-Way-Catalyst. Emerging Variable Valve Timing technology complicates cylinder air charge estimation by increasing the number of independent variables. In our previous study (SAE 2004-01-3054), an Artificial Neural Network (ANN) has been used successfully to represent the air flow rate as a function of four independent variables: intake camshaft position, exhaust camshaft position, engine speed and intake manifold pressure. However, in more general terms the air flow rate also depends on ambient temperature and pressure, the latter being largely a function of altitude. With arbitrary cam phasing combinations, the ambient pressure effects in particular can be very complex. In this study, we propose using a separate neural network to compensate the effects of altitude on the air flow rate.
Technical Paper

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux

2004-10-25
2004-01-2996
An experimental study has been carried out to provide qualitative and quantitative insight into gas to wall heat transfer in a gasoline fueled Homogeneous Charge Compression Ignition (HCCI) engine. Fast response thermocouples are embedded in the piston top and cylinder head surface to measure instantaneous wall temperature and heat flux. Heat flux measurements obtained at multiple locations show small spatial variations, thus confirming relative uniformity of in-cylinder conditions in a HCCI engine operating with premixed charge. Consequently, the spatially-averaged heat flux represents well the global heat transfer from the gas to the combustion chamber walls in the premixed HCCI engine, as confirmed through the gross heat release analysis. Heat flux measurements were used for assessing several existing heat transfer correlations. One of the most popular models, the Woschni expression, was shown to be inadequate for the HCCI engine.
Technical Paper

Model Based Analysis of Performance-Cost Tradeoffs for Engine Manifold Surface Finishing

2004-03-08
2004-01-1561
The link between manufacturing process and product performance is studied in order to construct analytical, quantifiable criteria for the introduction of new engine technologies and processes. Cost associated with a new process must be balanced against increases in engine performance and thus demand for the particular vehicle. In this work, the effect of the Abrasive Flow Machining (AFM) technique on surface roughness is characterized through measurements of specimens, and a predictive engine simulation is used to quantify performance gains due to the new surface finish. Subsequently, economic cost-benefit analysis is used to evaluate manufacturing decisions based on their impact on firm's profitability. A demonstration study examines the use of AFM for finishing the inner surfaces of intake manifolds for two engines, one installed in a compact car and the other in an SUV.
Technical Paper

Fuel Cell APU for Silent Watch and Mild Electrification of a Medium Tactical Truck

2004-03-08
2004-01-1477
This paper investigates the opportunities for improving truck fuel economy through the use of a Fuel Cell Auxiliary Power Unit (FC APU) for silent watch, as well as for powering electrified engine accessories during driving. The particular vehicle selected as the platform for this study is a prototype of the Family of Medium Tactical Vehicles (FMTV) capable of carrying a 5 ton payload. Peak stand-by power requirements for on-board power are determined from the projected future digitized battlefield vehicle requirements. Strategic selection of electrified engine accessories enables engine shutdowns when the vehicle is stopped, thus providing additional fuel savings. Proton Exchange Membrane (PEM) fuel cell is integrated with a partial oxidation reformer in order to allow the use of the same fuel (JP8) as for the propulsion diesel engine.
Technical Paper

The Impact of Exhaust Gas Recirculation on Performance and Emissions of a Heavy-Duty Diesel Engine

2003-03-03
2003-01-1068
This work studies the complex interactions resulting from the application and control of Exhaust Gas Recirculation (EGR) on a production heavy-duty diesel engine system, and its effectiveness in reducing NOx emissions. The coupling between EGR, the Variable Geometry Turbocharger (VGT) and the EGR cooler critically affects boost pressure, air/fuel ratio (A/F), combustion efficiency and pumping work. It is shown that EGR provides an effective means for reducing flame temperatures and NOx emissions, particularly under low A/F ratio conditions. However, engine thermal efficiency tends to decrease with EGR as a result of decreasing indicated work and increasing pumping work. Combustion deterioration is predominant at higher load, low speed and low boost conditions, due to a significant decrease of A/F ratio with increasing EGR.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

A Methodology for Cycle-By-Cycle Transient Heat Release Analysis in a Turbocharged Direct Injection Diesel Engine

2000-03-06
2000-01-1185
This study presents a systematic methodology for performing transient heat release analysis in a diesel engine. Novel techniques have been developed to infer the mass of air trapped in the cylinder and the mass of fuel injected on a cycle-by-cycle basis. The cyclic mass of air trapped in the cylinder is found accounting for pressure gradients, piston motion and short-circuiting during the valve overlap period. The cyclic mass of fuel injected is computed from the injection pressure history. These parameters are used in conjunction with cycle-resolved pressure data to accurately define the instantaneous thermodynamic state of the mixture. This information is used in the calculation and interpretation of transient heat release profiles.
Technical Paper

First and Second Law Analyses of a Naturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure

1998-02-23
980889
A naturally-aspirated, Miller cycle, Spark-Ignition (SI) engine that controls output with variable intake valve closure is compared to a conventionally-throttled engine using computer simulation. Based on First and Second Law analyses, the two load control strategies are compared in detail through one thermodynamic cycle at light load conditions and over a wide range of loads at 2000 rpm. The Miller Cycle engine can use late intake valve closure (LIVC) to control indicated output down to 35% of the maximum, but requires supplemental throttling at lighter loads. The First Law analysis shows that the Miller cycle increases indicated thermal efficiency at light loads by as much as 6.3%, primarily due to reductions in pumping and compression work while heat transfer losses are comparable.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Technical Paper

Quasi-Dimensional Computer Simulation of the Turbocharged Spark-Ignition Engine and its Use for 2- and 4-Valve Engine Matching Studies

1991-02-01
910075
A quasi-dimensional computer simulation of the turbocharged spark-ignition engine has been developed in order to study system performance as various design parameters and operating conditions are varied. The simulation is of the “filling and emptying” type. Quasi-steady flow models of the compressor, intercooler, manifolds, turbine, wastegate, and ducting are coupled with a multi-cylinder engine model where each cylinder undergoes the same thermodynamic cycle. A turbulent entrainment model of the combustion process is used, thus allowing for studies of the effects of various combustion chamber shapes and turbulence parameters on cylinder pressure, temperature, NOx emissions and overall engine performance. Valve open areas are determined either based on user supplied valve lift data or using polydyne-generated cam profiles which allow for variable valve timing studies.
Technical Paper

Development and Experimental Study of a 1.1 L Turbocharged Intercooled Carburettor Engine

1989-02-01
890458
Turbocharging and intercooling were applied to a 1.1 1 passenger car gasoline engine in order to achieve power and torque of a 1.6 1 naturally aspirated engine. On the basis of standard production four cylinder OHC powerplant a prototype engine was developed featuring: turbocharger with integral wastegate, intercooler, pressurised carburettor and modified camshaft. Extensive dynamometer testing was carried out with the main objective to investigate effects of various design parameters on turbocharger system behaviour and to select optimum values for a desired power increase. Following parameters were varied: boost pressure level, temperature and pressure drop across intercooler, turbine housings and valve timing. Fuel economy comparison shows that turbocharged engine can be advantageous in the low load - low speed region.
X